微藻,净化海洋环境的明星

你知道吗?在辽阔的蔚蓝海洋中生长着一类人们肉眼看不见的微小生物,但在显微镜下,我们却能清晰地看到它们千奇百怪的形态:有的如小球、有的似心形、有的如圆月、有的似银梭、有的如月牙、有的呈三角形。虽然它们自身的运动能力非常弱,但其特殊的体形能够很好地适应漂浮生活,可随波逐流地漂浮或悬浮在有光的表层海水中。

  与陆地上的树木、作物、杂草类似,此类生物具有叶绿素,能够进行光合作用,将二氧化碳和海水中的氮、磷等营养成分合成为自身所需的有机物,同时释放氧气到大气中。它们大多是单细胞生物,故人们称其为单细胞藻类(unicellular algae);因藻体微小(一般只有千分之几毫米),人们又称其为微藻(Microalgae)。在分类学上,研究人员常把具有中央体的某些蓝藻类植物(例如螺旋藻等)也归为微藻。

  目前,在中国海记录到的海洋微藻约有1800多种。由于不同种类的微藻所含的色素成分(叶绿素、类胡萝卜素、藻胆素等)及比例各不相同,因而呈现出斑斓的色彩:绿藻因叶绿素a、叶绿素b含量丰富而呈草绿色;蓝藻因含较多的叶绿素“藻蓝蛋白呈现蓝绿色;红藻主要含有藻红蛋白而呈现红色或玫瑰红色;硅藻和金藻则因含有较多的叶黄素而呈现出黄色、褐色、金褐色或黄褐色。

  

  小微藻大用途

  

  20世纪50年代以来的研究证明,微藻是海洋中的主要初级生产者,是海洋食物链的基础,驱动着整个海洋生态系统的能量流和物质流,直接和间接地养育着几亿吨的海洋动物,因此在海洋生态系统的物质循环中起着十分重要的作用。海洋微藻一旦受到破坏,将危及其他海洋生物及整个海洋生态系统。

  微藻对人类社会的生产、生活也有着十分重要的作用。目前,海洋微藻的开发利用主要集中于以下几个方面,有些用途已达到工业化生产水平,比如:作为人类的营养食品和健康食品;作为可再生生物能源,可通过热解获得生物质燃油,或通过光合作用及其特有的产氢酶系将水分解为氢气和氧气;提取色素、药物及甘油等化学产品;作为水产动物的饵料和禽畜饲料的添加剂。

  然而,微藻的用途远不止这些,消除入海污染物、清洁海洋环境便是它们近年来颇受关注的一种新用途。净化海水养殖业废水

  在当今集约化海水养殖业中,废水的排放是海水受到污染的一个重要原因。在鱼、虾、贝、蟹等的工厂化养殖和育苗过程中,由于饲料投喂过多,投放的干湿饲料只有约20%被养殖动物食用,过剩的饲料则在养殖水体中扩散累积,引起水体中氮、磷含量升高;同时,养殖动物的代谢作用也会造成水体中氨态氮和有机氮浓度升高。这样的废水一旦排入近岸海域,海水将因无机氮、磷的浓度增加而发生富营养化或产生赤潮,严重威胁到海洋生物的生长。因此,养殖业废水在排放前必须进行有效处理。小小的微藻就能对养殖业废水进行有效净化。

  微藻生长期间,各种形式的无机氮和有机氮均可被其所利用,磷则主要以磷酸一氢根和磷酸二氢根的形式被它们吸收。当微藻被引入养殖业废水中时,藻细胞通过光合作用向水中供氧,增加水中的溶解氧,使好氧菌能够不断分解有机质,进而产生二氧化碳,作为藻细胞光合作用的碳源。因此,在净化水质的过程中,人们常将微藻与细菌联合使用,也即我们通常所说的“藻菌共生”。同时,微藻吸收利用氮、磷等营养盐合成复杂的有机质。这就是微藻净化养殖业废水的机理。

  微藻光能利用效率高、生长繁殖迅速、产量高等特点,决定了其对营养物质的吸收和累积过程迅速;养殖业废水中的污染物浓度比工业废水和生活污水低得多,所以只要给微藻提供适宜的生长条件(光照、温度、pH值等),即可迅速改善废水的水质。

  中国海洋大学的研究人员将一种绿藻——亚心形扁藻

  (Platymonas subcordiformis)引入光一膜组合式生物反应器中,用于去除南美白对虾养殖废水中的氮磷营养盐。通过超滤膜组件良好的分离截留性能,使反应器中保持高密度的微藻细胞(藻密度达到2.51×107个细胞/毫升)。连续运行结果表明,废水中无机氮和无机磷的去除率分别达到83%和95.8%;净化后的水中,无机氮和无机磷浓度均达到《海水水质标准》(GB3097-1997)的二类标准要求,可以循环用于海水养殖,大大减轻了近岸海水的氮、磷污染负荷。

  中国科学院大连化学物理研究所发明的专利——“海绵一微藻”集成系统则是首先在工厂化养殖废水中接种微藻,吸收转化海水中无机氮和无机磷为微藻生物量;接种一定时间后,将海绵放到微藻生物量增加的废水池中,滤食微藻。通过微藻和海绵生物的联合作用,污染水体得到净化,过量无机氮、磷营养盐排入海水后引发的富营养化问题也大大减轻。

  

  分解海洋中的有机毒物

  

  有机锡化合物特别是三丁基锡(TBT)涂料是一类典型的内分泌干扰物,也是对人体健康危害最大的化合物之一。三丁基锡涂料曾在20世纪后半叶被广泛用于防止海洋附着生物(藤壶等软体动物)对船体、海洋建筑及钻井平台等的污损。三丁基锡的大量使用,使得沿海各国遇到严重的海洋生物污染问题。这是因为三丁基锡难以被光降解、化学降解和热分解,在自然环境中的残留期长,而且容易在贝类、鱼类等海产品中蓄积。1977-1983年,有机锡污染曾使得法国牡蛎养殖业几乎陷于瘫痪。日本于20世纪80年代进行的全国沿海水产品取样调查发现,有一半以上的样品三丁基锡残留量超过基准值。

  如今,虽然大多数国家已明令禁止有机锡涂料的生产和使用,但是,海水和底泥中的有机锡含量仍无明显下降,经由食物链进入人体并产生毒害的威胁依然存在。

  科学家普遍认为,当三丁基锡转化为二丁基锡(DBT)或一丁基锡(MBT)后,其毒性将太大降低,然而这种脱丁基反应只有在微藻等微生物的细胞色素氧化酶的催化下才能快速完成。

  国内外的研究证实,绿藻门的镰形纤维藻(AilkistDodesmLl8falcatus)、硅藻门的中肋骨条藻(skeletonema costatl)都能将三丁基锡降解为二丁基锡,绿藻门的小球藻(Chlorellavulgaris)则能使三丁基锡分步脱丁基化为二丁基锡和一丁基锡。根据香港科技大学和香港城市大学的研究,将小球藻接种于含100微克/升三丁基锡的培养体系中,14天后,分别有27%和41%的三丁基锡转化为二丁基锡和一丁基锡;采用海藻酸盐制备的固定化小球藻则可在24天内将60%的三丁基锡转化为二丁基锡和一丁基锡。

  

  吸附重金属废水

  

  随着现代工业的快速发展,大量含有重金属的工业废水以各种途径进入海洋。当溶解性重金属被海洋生物吸收进入食物链后,将对海洋中的高营养级生物甚至人类的健康构成威胁。因此,对这些工业废水进行有效处理,从源头削减重金属的入海量,对于维持良好的海洋环境和人类社会的和谐发展十分必要。

  同常规的重金属废水处理方法(化学沉淀、溶剂萃取、离子交换、电化学处理等理化技术)相比,利用海洋微藻作为吸附材料去除重金属具有非常明显的优点:原料价廉易得;不产生二次污染;吸附容量大,重金属去除率高;适于处理低浓度(100毫克/升以下)的重金属废水;被吸附金属的洗脱简便,利于吸附剂再生和金属回收。近年来,利用微藻富集重金属已被认为是一项非常有前途的废水生物净化技术。

  有趣的是,虽然活藻体和死藻体都能吸附废水中的重金属离子,但是,利用死藻体吸附重金属离子比活藻更为简便、经济和高效。这主要是因为,利用活藻体吸附处理重金属废水时,需要供给它们一定的养分,这些营养成分有可能导致水中的有机污染物含量增加;而且废水中的有毒元素能够抑制藻细胞生长,使得处理周期延长;另外,活藻体将部分重金属吸入细胞后,增大了重金属回收的难度。

  死藻体则不同于活藻体,其吸附重金属的机理是:藻细胞壁上的多糖、蛋白质、脂类等生物大分子具有羟基、氨基、巯基、磷酸基、咪唑基等带负电荷的官能团,可通过络合作用或静电引力结合重金属阳离子,降低水中溶解态重金属离子的浓度。

  由于死藻体不存在活藻体的上述缺陷,而且其细胞壁的破坏使得细胞内更多的官能团暴露出来,与金属离子接触的面积也加大,吸附能力明显增加。例如,螺旋藻干粉(死藻体)比新鲜藻(活藻体)能富集更多的三价铬;叉鞭金藻干粉对铜离子的去除率高于新鲜的藻液。

  目前的研究发现,微藻能有效去除多种重金属离子,且具有相当高的富集效率,对锌、汞、镉、铜、铅等金属离子的富集倍数可达数千倍,适于作为工业重金属废水的高效“清洁剂”。死藻体吸附达到饱和后,可利用少量乙二胺四乙酸(EDTA)溶液或盐酸溶液,使其中的重金属在数小时内快速解吸并进行回收再利用。广阔的应用前景

  海洋中的微藻种类数以万计,它们的个体虽然只是一个简单的细胞,却对有毒物质具有强大的吸收、吸附和降解作用,并以此净化受到污染的近岸海域环境,保证海洋生态系统的平衡与稳定。随着现代生物技术的发展和新的环境问题不断出现,可以预见,在未来的海洋环境保护中,小小的微藻将展示出更多更具魅力的用途。

  

  [责任编辑]

  赵菲

avatar

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: